Can GPT-4 Identify Propaganda?

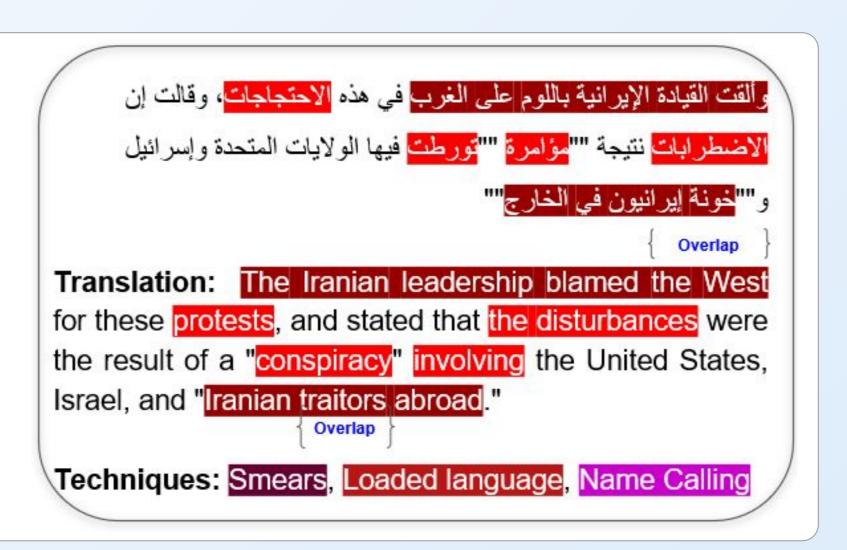
Annotation and Detection of Propaganda Spans in News Articles

Maram Hasanain, Fatema Ahmad, Firoj Alam

{mhasanain, fakter, fialam}@hbku.edu.qa

Introduction

- Propaganda techniques can influence readers opinions and actions.
- Need to design systems to detect them and the associated text spans.
- Research on Arabic content is relatively sparse and the datasets are limited in size.



Contributions

- Release the largest dataset to date, *ArPro*, for fine-grained propaganda detection
- Detailed insights on data collection and annotation, and comprehensive dataset statistics
- Investigate and compare the performance of GPT-4 for detecting and labeling spans with propagandistic techniques

ArPro VS. Existing Datasets

Reference	Lang	Content	# Items	# T
(Barrón-Cedeno et al., 2019)	En	News article	51,000	2
(Da San Martino et al., 2019)	En	News article	451	18
(Dimitrov et al., 2021b)	En	Memes	950	22
(Vijayaraghavan and Vosoughi, 2022)	En	Tweets	1,000	19
(Piskorski et al., 2023b)	En, Fr, de, It, Pl, Ru, Es, El, Ka	News article	2,049	23
(Alam et al., 2022b)	Ar		930	19
ArAlEval-23 (Hasanain et al., 2023a)	Ar	Paragraphs, Tweets	3,189	23
Ours	Ar	Paragraphs	8,000	23

Constructing ArPro

Acquire raw data
In-house dataset of over
600K news articles from
~400 Arabic news domains

Step 2

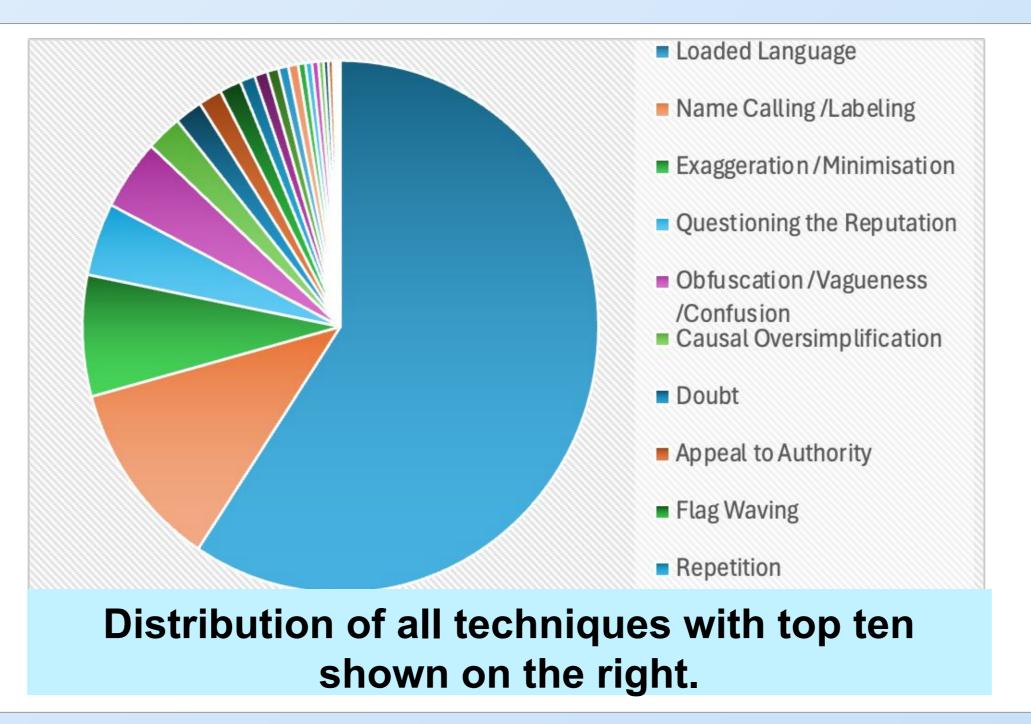
Prepare & sample
Parse articles, split into
paragraphs, clean, remove
duplicates and sampling

Manual annotation

Adopt an existing two-tier
taxonomy of six main categories,
grouping 23 persuasion techniques.

ArPro Dataset Statistics

Content	Stat
# news articles	2,810
# paragraphs	8,000
# sentences	10,331
# words	277,952
avg sent. length	26.90
avg par. length	34.74
% Propagandistic paragraphs	63%



Top Topics	#pars (%propagandistic)
News	2993 (73)
Politics	2330 (62)
Health	594 (47)
Social	473 (56)
Sports	403 (58)
Miscellaneous	286 (68)
Arts and Culture	215 (47)
Religion	210 (39)
Science and Technology	175 (40)

Total

Experiments

Aims

- Strong baselines on our ArPro dataset.
- Evaluation of the most powerful closed LLM to-date, GPT-4
 Classification Tasks
- 1. Binary propaganda detection (*Binary*)
- 2. Coarse-grained propaganda detection (*Multilabel, 6 labels*)
- 3. Propaganda techniques detection (*Multilabel, 23 labels*)
- 4. Propaganda text spans identification (*Multilabel* + *Multiclass* + *Sequence tagging*)

Data Splits

• 75% train, 8.5% dev, and 16.5% test.

Models

- Transformer/pre-trained language models (PLMs):
 AraBERT, XLM-RoBERTa
- **GPT-4**

Evaluation Measures

- Tasks 1-3: Micro-F1
- Task 4: modified F1 (considers partial matches)

Distribution:

Binary and coarse grained

Label Train Dev Test

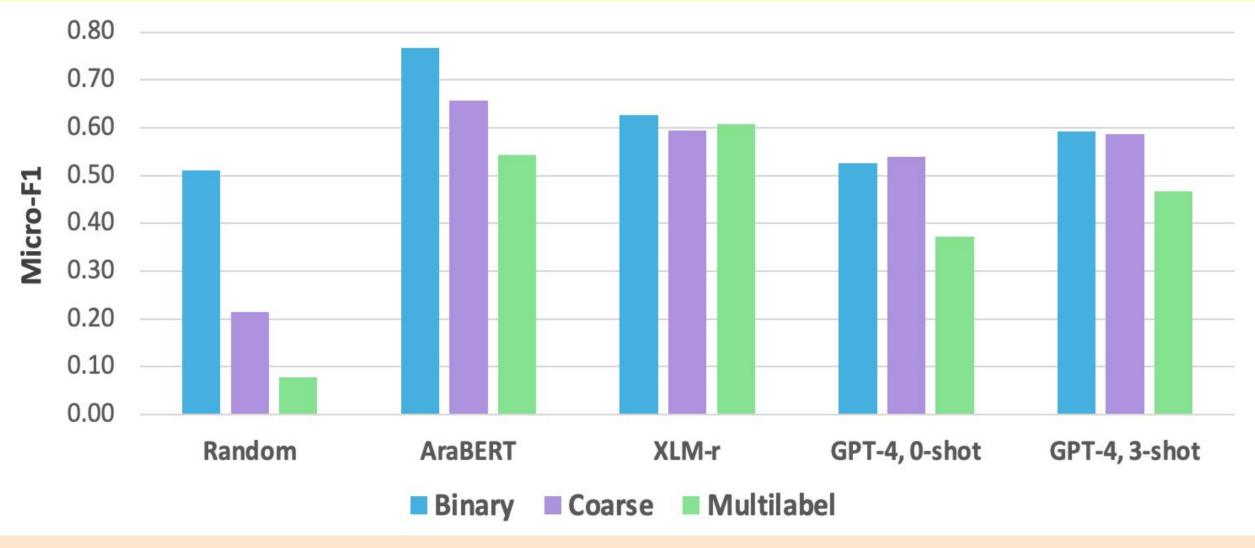
Binary

Binary			
Propagandistic	3,777	425	832
Non-Propagandistic	2,225	247	494
Total	6,002	672	1,326
Coarse-grained			
Call	176	21	40
Distraction	74	9	16
Justification	471	48	102
Manipulative_Wording	3,460	387	757
no_technique	2,225	247	494
Reputation	1,404	163	314
Simplification	384	42	82

8,194 917 1,805

Results

How does fine-tuned PLMs perform in propaganda detection in different granularities (Tasks 1-3) compared to GPT-4?



- AraBERT, Arabic-specific PLM model, outperforms XLM-r
- GPT-4, 0-shot lags behind PLMs in all 3 tasks
- GPT-4, 3-shot closes the gap especially for the coarser classification granularities

How effective is GPT-4 for detecting and labeling propagandistic spans in text?

- Investigate GPT-4 0-shot performance over Arabic
- Compare to six other languages from a multilingual dataset (SemEval23 shared task 3)

Lang.	#Samples	Micro-F1 (Random)
Arabic	1,326	0.117 (0.010)
English	3,127	0.111 (0.008)
French	610	0.138 (0.017)
German	522	0.057 (0.012)
Italian	882	0.115 (0.015)
Polish	800	0.071 (0.011)
Russian	515	0.073 (0.011)

- GPT-4, significantly outperforms a random baseline, but still underperforming
- Results on Arabic are in-line with other languages

